Challenges in Markov Chain Monte Carlo for Bayesian Neural Networks
نویسندگان
چکیده
Markov chain Monte Carlo (MCMC) methods have not been broadly adopted in Bayesian neural networks (BNNs). This paper initially reviews the main challenges sampling from parameter posterior of a network via MCMC. Such culminate to lack convergence posterior. Nevertheless, this shows that nonconverged chain, generated MCMC space network, can yield marginalization valuable predictive distribution output network. Classification examples based on multilayer perceptrons showcase highly accurate distributions. The postulate limited scope for developments BNNs is partially valid; an asymptotically exact seems less plausible, yet tenable research avenue.
منابع مشابه
Markov chain Monte Carlo for Bayesian inference
The chord length transform (CLT) is a useful tool to analyze fibre structures. Assuming e.g. arandom process of straight fibres then a realization of such a process can be observed in a binaryimage. The CLT maps to each point in the foreground of a binary image and to each direction thelength of the related chord, where the chord is the connecting part of a line in the direction...
متن کاملBayesian Computation Via Markov Chain Monte Carlo
A search for Markov chain Monte Carlo (or MCMC) articles on Google Scholar yields over 100,000 hits, and a general web search on Google yields 1.7 million hits. These results stem largely from the ubiquitous use of these algorithms in modern computational statistics, as we shall now describe. MCMC algorithms are used to solve problems in many scientific fields, including physics (where many MCM...
متن کاملBayesian Generalised Ensemble Markov Chain Monte Carlo
Bayesian generalised ensemble (BayesGE) is a new method that addresses two major drawbacks of standard Markov chain Monte Carlo algorithms for inference in highdimensional probability models: inapplicability to estimate the partition function and poor mixing properties. BayesGE uses a Bayesian approach to iteratively update the belief about the density of states (distribution of the log likelih...
متن کاملBayesian Inference for PCFGs via Markov Chain Monte Carlo
This paper presents two Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference of probabilistic context free grammars (PCFGs) from terminal strings, providing an alternative to maximum-likelihood estimation using the Inside-Outside algorithm. We illustrate these methods by estimating a sparse grammar describing the morphology of the Bantu language Sesotho, demonstrating that with sui...
متن کاملAdaptive Markov chain Monte Carlo for Bayesian Variable Selection
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Science
سال: 2022
ISSN: ['2168-8745', '0883-4237']
DOI: https://doi.org/10.1214/21-sts840